Scientists are exploring nuclear fusion technology through various experimental devices, and a popular design for this pursuit of clean, practically inexhaustible energy is known as the tokamak.
Photo Insert: These donut-shaped reactors can be found at the Korea Institute of Fusion Energy.
An exciting example of these donut-shaped reactors can be found at the Korea Institute of Fusion Energy, where scientists have reportedly set a new record by maintaining super-hot plasma for 30 seconds, Nick Lavars reported for New Atlas.
The idea behind fusion power is to recreate the processes that take place inside the Sun. Huge gravitational forces combine with intense heat and pressure to produce a plasma, in which nuclei smash into each other at high velocity to form helium and release energy.
Tokamaks are designed to recreate this process here on Earth with a series of coils placed around a torus-shaped reactor, magnetically confining plasma heated to millions of degrees for long enough for the fusion of nuclei to occur.
Many of these experimental devices are in operation around the world, and the Korea Superconducting Tokamak Advanced Research (KSTAR) reactor is one making some promising strides. Construction was completed on the device in 2007 and it then generated its first plasma in 2008.
In 2016, KSTAR claimed a world record by maintaining plasma heated to 50 million °C (90 million °F) for 70 seconds, which was outdone by China's Experimental Advanced Superconducting Tokamak (EAST) with a 102-second effort in 2017.
Words
The goal for devices such as these, however, is to heat the plasma to more than 100 million °C (180 million °F), and in 2018 KSTAR did just that, albeit for 1.5 seconds. It upped the ante with an eight-second effort at the same temperature in 2019, and then last December set a world record by maintaining plasma at 100 million °C for 20 seconds.
Comments